ECAI 2023 TUTORIAL – KRAKÓW, POLAND

DECENTRALIZED FEDERATED LEARNING: ENABLING COLLABORATIVE AI WITH ENHANCED TRUST AND EFFICIENCY

<u>Alberto Huertas Celdrán¹, Enrique Tomás Martínez Beltrán²,</u> <u>Pedro Miguel Sánchez Sánchez², Gérôme Bovet³,</u> Gregorio Martínez Pérez², and Burkhard Stiller¹

¹Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, Switzerland

²Department of Information and Communications Engineering, University of Murcia, Spain

³Cyber-Defence Campus within armasuisse Science & Technology, Thun, Switzerland

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

armasuisse Science and Technology

Presenters' Information

Alberto Huertas Celdrán

Senior Researcher

Communication Systems Group (CSG) at the Department of Informatics (IfI), University of Zurich UZH, 8050 Zürich, Switzerland

huertas@ifi.uzh.ch

Enrique Tomás Martínez Beltrán

Universität Zürich[™]

Junior Researcher

Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain

enriquetomas@um.es

Pedro Miguel Sánchez Sánchez

2

Junior Researcher

Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain

pedromiguel.sanchez@um.es

More information at https://cyberdatalab.um.es/dfl-ecai2023/

Outline

\Box Tutorial structure \rightarrow 3 main parts

- 1. Theoretical Part Decentralized Federated Learning Basics (40 min)
- 2. Practical Part Frameworks, Applications, and Use Cases (30 min)
- 3. Wrap-up Lessons Learned, Trends, and Conclusions (20 min)

Background Details

□ Analysis of 224 work items related to DFL

- Fundamentals
- Frameworks
- Application Scenarios
- Lessons Learned, Trends, and Open Challenges

Published (September 2023)

IEEE Communications Surveys & Tutorials (35.6 IF, D1)

Martínez Beltrán, E. T., Quiles Pérez, M., Sánchez Sánchez, P. M., López Bernal, S., Bovet, G., Gil Pérez, M., Martínez Pérez, G., & Huertas Celdrán, A. (2023). Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges. IEEE Communications Surveys & Tutorials. doi: 10.1109/COMST.2023.3315746

TUTORIAL – PART I

Decentralized Federated Learning Motivation and Fundamentals

The Growing Importance of Decentralized Federated Learning

Federated Learning enables AI models to be trained directly on user devices, keeping data localized and private

Typical lifecycle of FL process

1. *Client Selection*: The **central server orchestrates** the training process samples from a set of clients

2. *Broadcast*: The selected clients **download the current** model weights and training program

3. *Client computation*: Each selected device **locally computes** an update to the model parameters

4. *Aggregation*: The central server collects all the model updates from the devices and aggregates them

5. *Model update*: The server locally updates the shared model based on the aggregated update

Steps 2-5 are repeated until our model has converged

Motivation

Drawbacks of CFL

CFL has a **single point of failure**.

- Any unavailability of the central server will cause an immediate and complete disruption of the training process
- □ The server needs to have **reliable communication** with the devices
 - To support the transfer of potentially voluminous data with all of them
- □ The server needs to be **trusted by all devices**
 - Also, it manages and guarantees the quality of service to orchestrate the process

Decentralized Federated Learning removes the central server, allowing devices to collaborate directly in model training

Also known in the literature as "Fully decentralized Federated Learning" or "Serverless Federated Learning"

Fundamental aspects of Decentralized Federated Learning

Fundamentals Overview

- □ Analyze the **key aspects** presented in the literature
 - Federation Architecture: Scheme dictating how DFL devices interact collaboratively
 - Network Topology: Defines layout and efficiency of node connections
 - **Comm. Mechanisms**: Protocols guiding communication among DFL nodes
 - Security and Privacy: Ensuring data protection in a decentralized setting
 - KPIs: Metrics to measure DFL efficiency and effectiveness
 - Optimizations: Refining DFL algorithms boosts performance outcomes

Federation Architectures

Analyze the key aspects presented in Federation Types

Networks of Remote Devices Cross-device DFL

- □ Nodes number >100, each with thousands of samples
- Limited computational power per node
- Power consumption and complex training
- Nodes may periodically disconnect

Networks of Isolated Organizations Cross-silo DFL

- Nodes are organizations or data centers
- Usually, <100 nodes with millions of samples</p>
- Distributed from diverse business consumers
- Robust and scalable computing over time
- High network performance, minimizing failure points

Participants can be in different roles during the federation

Trainer

- Aims to train a local model with its local dataset
- Transmits parameters to neighbors and expects updated federated model parameters

Aggregator

- Responsible for obtaining and aggregating parameters in the global model
- Transmits them to neighboring nodes

Proxy

- Relays received model parameters to neighboring nodes
- Allows interconnection between different nodes or network topologies (e.g., clusters)

Idle

May not have any of the roles, not participating in the federation

Analyze the key aspects presented in **Decentralization Scheme**

- Device-to-device communication •
- No global coordination, local aggregation in all devices
- Asynchronous exchange

Device-to-device communication ■

- No global coordination, local aggregation, and rotating role
- Asynchronous exchange

- Server-client communication
- Global coordination, global aggregation
- Single point of failure and bottleneck
- Need to trust a central device

Explore various configurations in DFL depending on data distribution

□ Independent and Identically Distributed (IID) vs. Non-IID Data

Data vary in quality, diversity, and quantity in the network, increasing the complexity of training, analysis, and evaluation

- Accepting the presence of different federated models
 - Adopt a flexible architecture to accommodate variations in data and model structures

Organization of Data

The strategic alignment of data forms the foundation for effective DFL, balancing the diversity of sources and the unified learning objectives

- Horizontal Federated Learning (HFL)
 - Applicable when there are many overlapping features and few overlapping nodes
 - Common in cross-device scenarios
- Vertical Federated Learning (VFL)
 - Focuses on feature binding with many overlapping nodes and few overlapping features
- Transfer Federated Learning (TFL)
 - Used when there is a limited feature and sample intersection between nodes.
 - Aims to build efficient models in cases where data are sparse

Network Topology

Fundamentals | Network Topology

- High communication cost and complexity
- Low flexibility with new nodes
- High reliability and robustness despite failures

(a) FULLY CONNECTED NETWORKS o 슈 ኡ 道 [호]

6

- Communication cost grows linearly
 - Potential bottleneck at the central node. Low fault tolerance.
- **Ring-structured** (unidirectional or bidirectional)
 - Increased transmission delays as nodes grow

Random

- Connections based on heuristics
- High flexibility and moderate fault tolerance

Similarity-based Clusters

- Based on local model parameter similarity
- More individualized clusters

🌞 🏠 🗶 🖪 ⊘

Proxy-based Clusters

- Nodes interconnect different topologies
- A potential bottleneck in the overall architecture

(b) PARTIALLY CONNECTED NETWO

Communication Mechanisms

Fundamentals I Comm. Mechanisms

P2P approach

• Each peer is in direct contact with the rest

Gossip approach

 Peers operate in parallel, and with one or more randomly selected neighbors

Communications Scheme

Synchronous

- Nodes perform local multi-step training
- Parameters exchanged at synchronization points
- □ Slow convergence due to waiting time

Semi-synchronous

- Local training until a preset synchronization point
- Balances resource usage and communication costs
- Uses thresholds for beneficial aggregation

Asynchronous

- Independent parameter transmission and reception
- □ Offers faster convergence speed
- Faces higher costs and lower generalization due to staleness

Security and Privacy

Fundamentals | Security and Privacy

Vulnerability in Decentralized Scenarios

Unveiling the Critical Vulnerability Landscape in Decentralized Configurations

- Topology-based Impact
 - Fluctuating vulnerability levels are influenced by specific network structures
- Amplified Risks
 - Escalation in hazards due to profuse, sporadic, and fragile connections

Diverse Attack Types

Exploring the Diverse and Complex Spectrum of Potential Attacks in Decentralized Systems

- Adversarial Attacks
 - Potential for unintended model and data manipulation and operational damage
 - Encompasses model inversion, membership inference, etc.
- Communications Attacks
 - Impact on behavioral and communicational aspects
 - Encompasses eclipse attacks, free-rider attacks, etc.

Fundamentals | Security and Privacy

Strategic Security Countermeasures

Forging Ahead with Strategic and Comprehensive Security Countermeasures to Safeguard DFL Systems

- Robust Data Protection
 - Employing cryptographic methods and differential privacy
- Robust Aggregation Mechanisms
 - Proactive creation and direct deployment among fresh network entrants
- Additional Security Layers
 - Incorporation of anomaly and model misbehavior detection
 - Blockchain technology ensures resilient decentralization and inter-participant reliability
 - Moving Target Defense (MTD) for dynamically altering attack surfaces

Key Performance Indicators

Fundamentals | Key Performance Indicators De MURCIA

FUNDAMENTALS

DFL Optimizations

Fundamentals | DFL Optimizations

Node Optimizations

Unlock the full potential of each node in the federation

- Optimize node selection during federation
- Enhance aggregation algorithm

Communications Optimizations

Ensure smooth, efficient communication across the network

- Parameters reduction and comprehension
- Improve distribution schemes

Model Optimizations

Achieve superior federated models with balanced node contribution

- Complexity reduction in the federated models
- Fair participation and trustworthiness

TUTORIAL – PART II

Frameworks, Applications, and Use Cases

Frameworks

Open-Source Frameworks

Analysis of +15 solutions

Mature Frameworks

- Examples: Tensorflow Federated, PySyft, FederatedScope
- □ Characteristics
 - Supported by large companies
 - Offers robust building blocks and deployment on multiple machines
 - Limited focus on adversaries and privacy mechanisms

Incipient Frameworks

- Examples: BrainTorrent, IPLS, TrustFed, Fedstellar
- □ Characteristics
 - Aimed at specific applications like medical imaging
 - Emphasizes P2P communications
 - Utilizes emerging technologies like Blockchain and IPFS

Reference	OS	Participant Type	Aggregator Node	Algorithms	Protocol	Privacy	Data Type	Scenario	Benchmarkin
TFF [143]	Linux MacOS	Cross-silo	Centralized Decentralized	Median FedAvg FedProx	gRPC	1	Time series Images	Simulation	1
PySyft [144]	Windows Linux MacOS Mobile	Cross-silo Cross-device	Centralized Decentralized	FedAvg	Websockets	1	Images	Simulation Real	/
SecureBoost [56]	Linux MacOS	Cross-silo	Centralized Decentralized	FedAvg GBDT	gRPC	1	Time series	Simulation	×
FederatedScope [145]	Windows Linux MacOS Mobile	Cross-silo Cross-device	Centralized	FedAvg FedOpt	gRPC	1	Time series Images	Simulation Real	1
FedML [146]	Linux MacOS	Cross-silo	Centralized Decentralized	FedAvg FedOpt FedNova	gRPC MPI MQTT	1	Time series Images	Simulation Real	1
LEAF [147]	Linux MacOS	Cross-silo	Centralized Decentralized	-		-	Time series Images	Simulation	1
BrainTorrent [148]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg	N/S	×	Time series	Simulation Real	×
Scatterbrained [43]	Windows Linux MacOS	Cross-device	Centralized Decentralized	FedAvg	ZeroMQ	×	Time series Images	Simulation	×
IPLS [149]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg	P2P	1	Time series Images	Simulation Real	1
TrustFed [142]	Windows Linux MacOS	Cross-device	Centralized Decentralized	FedAvg	P2P	1	Time series Images	Simulation	×
FLoBC [150]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg	HTTP (REST API)	×	Time series Images	Simulation Real	1
BLADE-FL [151]	Windows Linux	Cross-device	Decentralized	Custom algorithm	P2P	1	Images	Simulation	1
DISCO [15]	Windows Linux MacOS Mobile	Cross-device	Centralized Decentralized	Custom FedAvg	peer.js	1	Time series Images	Simulation	×
CMFL [152]	Windows Linux MacOS	Cross-device	Decentralized	Median Trimmed Mean Krum Multi-Krum	P2P	1	Time series Images	Simulation	1
DeFL [40]	Windows Linux MacOS	Cross-device	Decentralized	Custom algorithm	N/S	×	Time series Images	Simulation Real	1
FL-SEC [12]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg	N/S	1	Time series	Simulation	1
DisPFL [38]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg Ditto FOMO Sub-FedAvg	P2P	×	Time series Images	Simulation Real	×
GossipFL [70]	Windows Linux MacOS	Cross-device	Decentralized	FedAvg S-FedAvg D-PSGD CHOCO-SGD	P2P	×	Images	Simulation	1
Fedstellar [153]	Windows Linux MacOS	Cross-silo Cross-device	Centralized Decentralized Semi-Decentralized	FedAvg Krum TrimmedMean	P2P HTTP (REST API)	1	Time series Images	Simulation Real	1

Fedstellar I Overview

Fedstellar: A Platform for Decentralized Federated Learning

¹Martínez Beltrán, et al. (2023). Fedstellar: A Platform for Decentralized Federated Learning. arXiv preprint arXiv:2306.09750.

FEDSTELLAR

Fedstellar | Goal

Fedstellar is an **innovative platform** that facilitates the training of FL models in a decentralized fashion.

- Deployment of physical and virtual devices
- Topology generation
- Provisioning of federated functionality
- Federation monitoring and management

Each device performs the following process

- 1. Creates a **communication link** with its immediate neighbors
- 2. Broadcasts a message outlining the federation definition
- 3. Model training, decentralized aggregation, and asynchronous exchange of model parameters
- 4. Assess and report on any disruptions

FEDSTELLAR

Fedstellar | Architecture

- Frontend provides high-level
 - functionality for easy and fast deployment of federations
 - Deployment of federated topologies
 - Monitoring of metrics from the federation
- Controller serves as the orchestration of the platform
- Core provides the basic functionality for the execution of federations

Fedstellar: A Platform for Decentralized Federated Learning Expert Systems With Applications <u>https://arxiv.org/abs/2306.09750</u>

© 2023 CyberDataLab, University of Murcia

UNIVERSIDAD DE MURCIA

Fedstellar | Federation Architecture

Decentralized Federated Learning (DFL)

- Fully connected topology
- All nodes aggregate model
 parameters

Semi-Decentralized Federated Learning (SDFL)

Centralized Federated Learning (CFL)

- Fully connected topology
- A different node aggregates the model parameters in each federation round
- Star topology
- A server node that aggregates the model parameters from the rest of the network

Application Scenarios for DFL

Military 🗬

APPLICATTIONS

Use Cases

Use Case 1

Simulated deployments using docker containers and well-known distributed datasets

URL: https://federatedlearning.inf.um.es User: demo / Password: DFL-ECAI-2023

© 2023 CyberDataLab, University of Murcia

USE CASES

43

Use Case 2

Decentralized Federated Learning to detect anomalies produced by malware affecting Raspberry Pis

Use Case 2 (I)

Fedstellar: A Platform for Decentralized Federated Learning¹

Measure federated models, resource usage, and network of all participants

Virtualized scenario

- 20 docker containers for image classification
- Using MNIST and CIFAR10 (Non-IID data)

Physical scenario

- 8 single-board devices for detecting cyberattacks
- Using a dataset of syscalls

Characteristic	Physical Scenario	Virtualized Scenario	
Participant	8 (5 Baspherry Pi 4 / 3 Book64)	20 (docker containers)	
Characteristics	8 (5 haspberry 114 / 5 hocko4)	20 (docker containers)	
Dataset	Syscalls (Huertas Celdrán et al. 2023b)	MNIST (Deng, 2012) $/$	
Dataset	Systans (muertas celuran et al., 20230)	CIFAR-10 (Krizhevsky, 2009	
Federated	Autoongodor	LoNot5 / MobileNot	
Model	Autoencoder	Leivero / Mobileiver	
Network	Fully connected	Fully connected	
Topology	Fully connected	Star, Ring	
Federation	DFI	DEI SDEI CEI	
Architecture		DFL, SDFL, OFL	

¹Martínez Beltrán, et al. (2023). Fedstellar: A Platform for Decentralized Federated Learning. arXiv preprint arXiv:2306.09750.

Use Case 2 (II)

URL: https://federatedlearning.inf.um.es User: demo / Password: DFL-ECAI-2023

¹Martínez Beltrán, et al. (2023). Fedstellar: A Platform for Decentralized Federated Learning. arXiv preprint arXiv:2306.09750.

Use Case 2 (III)

Physical scenario

- Fedstellar achieved an F1 score of 91%
- CPU usage of 31.6% during federation
- RAM usage of 18.5% during federation

Virtualized scenario

- Fedstellar obtained an F1 score of 98% using DFL and 97.3% using SDFL with MNIST
- Reduction of the training time for model convergence by 32% compared to centralized architectures

Federation	Network	Model	\mathbf{CPU}	\mathbf{RAM}	Network	Time*
Architecture	Topology	$(F_1 \ score)$	(%)	(%)	(MB)	(min.)
	Fully	$0.987 \ {\pm} 0.009$	$78\ {\pm}15\ \%$	$29~{\pm}6~\%$	$\approx 1243~{\rm MB}$	≈ 28
DFL	Star	$0.955\ {\pm}0.012$	$72\ {\pm}13\ \%$	$28~{\pm}5~\%$	$\approx 1165~{\rm MB}$	≈ 35
	Ring	$0.917\ {\pm}0.019$	70 ± 14 %	$26~{\pm}4~\%$	$\approx 1089~{\rm MB}$	≈ 41
	Fully	$0.973\ {\pm}0.015$	$69~{\pm}12~\%$	$28~{\pm}5~\%$	$\approx 1148~{\rm MB}$	≈ 32
\mathbf{SDFL}	Star	$0.938\ {\pm}0.020$	$66~{\pm}11~\%$	$27~{\pm}4~\%$	$\approx 1065~{\rm MB}$	pprox 38
	Ring	$0.901\ {\pm}0.027$	$64\ {\pm}13\ \%$	25 ±4 %	$\approx 1023~{\rm MB}$	≈ 45
CFL	Star	$0.992\ {\pm}0.010$	$58\ {\pm}10\ \%$	$26~{\pm}3~\%$	$\approx 985~{\rm MB}$	≈ 40

* Overall time to reach model $F_1\ score \geq 90\ \%$

¹Martínez Beltrán, et al. (2023). Fedstellar: A Platform for Decentralized Federated Learning. arXiv preprint arXiv:2306.09750.

© 2023 CyberDataLab, University of Murcia

Use Case 2 (IV)

Mitigating Communications Threats in Decentralized Federated Learning through Moving Target Defense¹

Motivation

- DFL poses various types of sensitive information to federation risks, including network topology, participants' roles, and communication patterns
- Presence of communication-based attacks: disrupting the model aggregation process and cause security breaches or privacy infringements

Contributions

- Create a threat model that identifies sensitive information susceptible to eavesdropping, Man-in-the-Middle, and eclipse attacks
- Design and implement an eclipse attack
- Develop a security module enabling encryption and proactive defense using MTD
- Three security configurations were assessed
 - No security baseline
 - A configuration with encryption
 - A configuration integrating the encryption and MTD

Characteristic	Description				
DFL Platform	Fedstellar [18]				
Federation Architecture	DFL				
Participants	5 Raspberry Pi 4				
	3 Rock64				
Network Topology	Random				
Federated Model	LeNet5				
Dataset	MNIST [19]				
Security Configuration	1 Baseline				
	2 Encryption				
	(3) Encryption and MTD				
Attack	Eclipse attack:				
	• One external attacker				
	• One target participant				

¹Martínez Beltrán, et al. (2023). Mitigating Communications Threats in Decentralized Federated Learning through Moving Target Defense. arXiv preprint arXiv:2307.11730.

Use Case 2 (V)

- An extensive experimental evaluation used a real-world topology with diverse connections and participants
- The MNIST dataset and eclipse attacks were utilized for the evaluation

- An average F1 score of 93% was reached, peaking at 97% without security measures
- Secure configurations using MTD shows a minor increase in CPU usage and network traffic and a slight rise in RAM

Security Configuration	Information Protected	Performance Metrics				
_		F1 Score	CPU	RAM	Network	
Baseline (No security)	N/A	97%	54.6%	31.9%	110.2 MB	
			$\pm 1.8\%$	$\pm 2.3\%$	$\pm 12 \text{ MB}$	
Encryption	Model Parameters	94%	60.9%	33.8%	185.2 MB	
	• Roles		$\pm 3.7\%$	$\pm 2.41\%$	$\pm 21 \text{ MB}$	
	• Communication Patterns					
Encryption + MTD	Model Parameters	92.5%	63.2%	35.9%	226 MB	
	• Roles		$\pm 3.5\%$	$\pm 1.5\%$	$\pm 15 \text{ MB}$	
	• Communication Patterns					
	• Topology					
	• Activity Periods					

Table 5: Security Settings, Protection, and Performance in DFL

¹Martínez Beltrán, et al. (2023). Mitigating Communications Threats in Decentralized Federated Learning through Moving Target Defense. arXiv preprint arXiv:2307.11730.

TUTORIAL – PART III

Conclusions and Challenges

Conclusions

Current Trends

Explore the breadth of **DFL applications**, from healthcare to vehicles, demonstrating its adaptability and vital role across **application scenarios**

□ Healthcare

 Widely used in electronic medical records, medical imaging, disease detection, and collaborative drug discovery

□ Industry 4.0

Reducing costs and enhancing operational efficiency

Mobile Services

 Augments personalization and privacy, refining user experiences in edge devices

Military

 Prominent in UAV deployment, ensuring enhanced security and operational excellence

Vehicles

 Facilitates anomaly detection and improved communication systems, ensuring safer and more efficient vehicle operations

Current Trends

Unearth the fundamentals of DFL, focusing on architecture, communication, and optimization

Federation Architecture

 Central to DFL, ensuring robust and effective communication between diverse network nodes

Network Topology

 Predominantly fully connected, offering versatility and simplicity in DFL scenarios (used in about 50%)

Communication Mechanisms

 Over 65% of solutions focus on enhanced, streamlined communication, particularly in healthcare and mobile services

□ Security and Privacy

 Paramount in DFL, ensuring user and data protection across all application scenarios

□ Key Performance Indicators

 Metrics for assessing and enhancing effectiveness and impact

Optimizations

 Refining and improving DFL for optimal performance and efficiency, especially in model parameter exchanges

CONCLUSIONS

Delve into the critical lessons learned from extensive DFL research, highlighting existing limitations and areas for further exploration and enhancement

Aggregation Algorithms

 Specific aggregation algorithms for DFL, like FedAvg, are limited in use and often require customization to adapt to diverse federation models

Decentralized Systems

 Limited studies on improving decentralized systems with DFL highlight a need for a deeper analysis of resilience, robustness, and overall security in reducing server dependency

Realistic Federation Benchmarks

• A limited number of solutions provide realistic federation benchmarks. No single benchmark is universally used, and current ones often ignore vital metrics like system efficiency and architecture robustness

Consensus on Frameworks

• No consensus exists in the literature for deploying DFL architectures, with most frameworks adapted to specific validation scenarios. Lack of mature open-source DFL frameworks that are network, node, and data agnostic

Military and Vehicular Scenarios

 These present complex challenges for deploying DFL solutions, lacking robustness and facing issues like limited bandwidth and high-security requirements

□ Use of Unsupervised Learning

A significant gap exists in the literature regarding using unsupervised learning in DFL architectures, with a
predominant focus on supervised ML models for classification tasks

Challenges

Challenges and Future Developments

Confront the pressing challenges in DFL and envision the pathways for future advancements

DFL Fundamentals

- →Dynamic participant selection
- →Personalized local model learning
- Detecting attacks in DFL scenarios and differentiating based on privacy

DFL Frameworks

- →Implement and manage DFL fundamentals and practical application
- Data preprocessing, normalization, and advanced data augmentation techniques

DFL Application Scenarios

- →Evaluate DFL in Smart City technologies
- \rightarrow Combine AI, IoT, and DFL for testing tools

Challenge	Future Developments			
Funda	mentals [Fund.]			
Scalability of DFL with increasing	Dynamic participant selection			
participants (!!!)	 Personalized local model learning 			
Cybersecurity mechanisms for a secure	• Detect attacks in DFL scenarios			
DFL (!!!)	• Different treatment based on privacy			
Trustworthiness among federation	Maintain trust policies			
participants (!!!)	• Prevent dishonest behavior			
Homogeneous node participation (!!)	• Quantization and gradient compression			
	• Use of SDFL			
Address participant mobility in DFL	 Topology-aware node reconfiguration 			
scenarios (!!)	 Resilient synchronization methods 			
Study of adversarial attacks (!!)	• Identify the techniques and their impacts			
	 Compare against traditional approaches 			
Explore the use of Reinforcement	• Optimize the federated model performance			
Learning (!!)	 Improve the selection of participants 			
DFL standardization efforts (!!)	 Promote comprehensive DFL standards 			
	• Involve standard-setting bodies (ISO, IEEE)			
5G and 6G technologies for	 Network slicing utilization 			
communications (!)	 5G/6G-integrated edge computing 			
Frameworks [Fram.]				
Modular, scalable, and efficient	 Implement and manage DFL fundamentals 			
frameworks (!!!)	Application in practical scenarios			
Heterogeneous datasets in decentralized	 Data preprocessing and normalization 			
participants (!!)	 Advanced data augmentation techniques 			
Dynamic scheduling of federated	 Adaptable federation architecture 			
network (!)	Resilient algorithms			
Application scenarios [Sce.]				
Exploration of new DFL application	• Evaluate DFL in smart city technologies			
scenarios (!!)	• Combine AI, IoT, and DFL for testing tools			

! low importance, !! high importance, !!! critical

Tutorial Overview

- □ Comprehensive analysis of DFL evolution
- Outline of fundamentals and comparison with traditional architectures
- Exploration of frameworks, application scenarios, and challenges

Addressed the following Research Questions:

RQ1. What are the fundamental aspects of DFL?

- Clear delineation from CFL
- Introduction to detailed DFL taxonomy
- Covers architectures, topologies, communication, and security

RQ2. What DFL frameworks exist, and what fundamentals do they provide?

- Discussion on mature and nascent DFL frameworks
- Highlight of DFL's robust foundational elements

RQ3. Which are the main characteristics of the most relevant scenarios of DFL?

- Analysis of key application areas: healthcare, mobile services, Industry 4.0
- Insights into decentralized cross-device architectures

Q4. RQ4. What trends, lessons learned, and challenges have emerged in DFL?

- Exploration of advanced federation architectures and topologies
- Detailing limitations and prospective research areas: heterogeneous datasets, cyberattacks, 5G/6G communications

Our Research Projects about DFL

DEFENDIS: Decentralized Federated Learning for IOT Device Identification and Security FEDERAL OFFICE FOR DEFENCE PROCUREMENT ARMASUISSE

DEFENDER: DEtecting Feasible cybErattacks to iNcrease cybersecurity and cyberDEfence in experimental laboratoRies

INCIBE (Spanish CERT)

ROBUST-6G: smaRt, AutOmated, and ReliaBle SecUrity Service PlaTform for 6G

Horizon Europe Framework Programme (HORIZON)-SNS-2023

To be started in December 2023

Cyber Data La

More information at https://cyberdatalab.um.es

ECAI 2023 TUTORIAL – KRAKÓW, POLAND

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?

<u>Alberto Huertas Celdrán</u>¹, <u>Enrique Tomás Martínez Beltrán</u>², <u>Pedro Miguel Sánchez Sánchez</u>², Gérôme Bovet³, Gregorio Martínez Pérez², and Burkhard Stiller¹

¹Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, Switzerland

²Department of Information and Communications Engineering, University of Murcia, Spain

³Cyber-Defence Campus within armasuisse Science & Technology, Thun, Switzerland

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

armasuisse Science and Technology